Statistical Significance Testing

Brian K. Miller, Ph.D.

Key Terms

- Population
- Descriptive statistics
- ____statistics

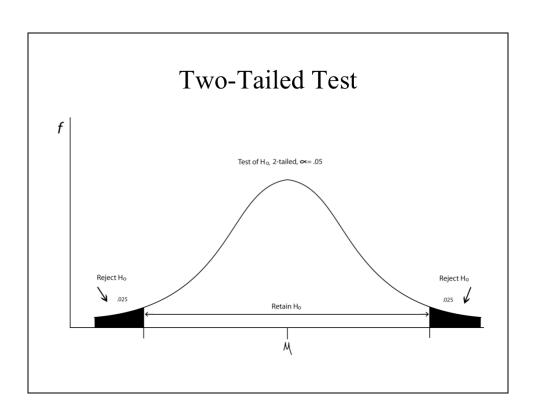
Chance (or Probability) and Error

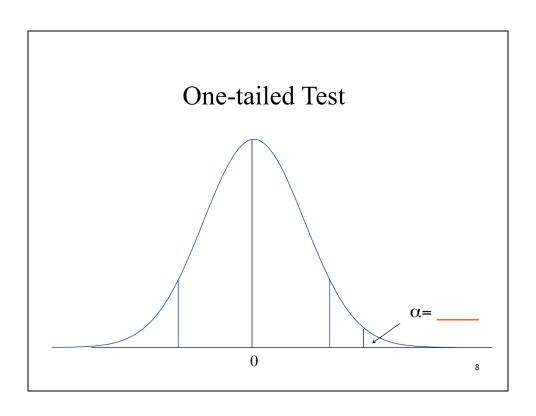
 Probability of statistical event occurring due simply to in characteristics of samples of given sizes selected randomly from population

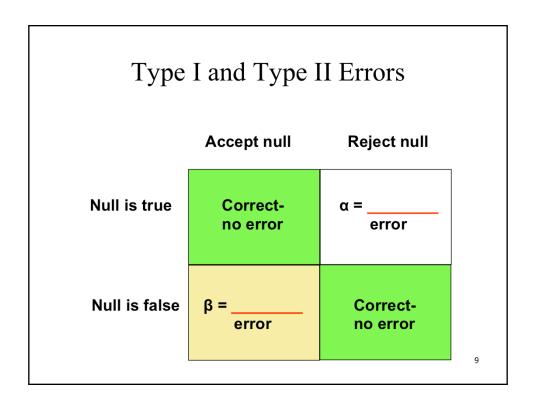
- AKA random ______ error
- Differences between sample characteristics and characteristics of larger population
- When we randomly select two samples of same size from same population likely to find differences between these two samples

Walkup's First Laws of Statistics

- Law No. 1
 - Everything _____ with everything, especially when the same individual defines the variables to be correlated.
- Law No. 2
 - It won't help very much to find a strong correlation between two variables that you don't understand well
- Law No. 3
 - Unless you can think of a logical reason why two variables should be connected as cause and effect, it doesn't help much to find a correlation between them.
 - For example, in Columbus, Ohio the mean correlates very nicely with the in the names of the months!


4


Hypotheses


- Unproven proposition that tentatively explains certain facts or phenomena
- hypothesis
 - Statement about status quo
 - Indicates that no difference exists
- Goal: _____ the null hypothesis
 - Indicates that _____ difference exists

Null vs. Alternative Hypotheses

- hypothesis that the mean is equal to 0 $H_0: \mu = 0$
- Alternative hypothesis that the mean does to 0 (i.e. ____-tailed test) $H_1: \mu \neq 0$
- Alternative hypothesis that mean is than 0.0: (______ tailed test) $H_1: \mu > 0$

Statistical Significance

 Critical probability in choosing between the null hypothesis and the alternative hypothesis

Level (95% confident)

(risk of Type I error)

■ typically p <

■ Indicates probability that 95% of other samples randomly drawn from same population would not support null hypothesis

10

Statistical Significance (cont'd)

- Statistical significance
 - _____ (p or p-value) that this result that arises in this sample is from chance alone and does not truly represent population
 - In other words, effect observed in sample data is not due to random or chance
- To determine statistical significance:
 - We must compare size of effect to our measure of random sampling error, which is usually a measure of _____

Statistical Significance (cont'd)

Problem

- Because measures of statistical significance rely on standard error, and
- Standard error is greatly influenced by
- *Large sample sizes often produce statistically significant results, even for small effects

&Example

- *Comparing sample mean of 105 to population mean of 100
- *With standard deviation of 15
- *For sample of n = 25, t = 1.67,
- *For sample of n = 1600, t = 13.33, p

Effect Size & Practical Significance

- Provides measure of statistical effect while minimizing role of sample size
- Calculated by essentially removing sample size from standard error
- Causes effect to be expressed in standard deviation units rather than standard error units
- Effect sizes provide a measure of significance, using following guidelines:
 - *d* is measure size of difference between two groups
 - d < .25 is small
 - $.25 \le d < .75$ is moderate
 - $d \ge .75$ is _____

That's all folks!

bkmiller@txstate.edu 512-245-7179

